Computing Optical Flow with Physical Models of Brightness Variation
نویسندگان
چکیده
This paper exploits physical models of time-varying brightness in image sequences to estimate optical flow and physical parameters of the scene. Previous approaches handled violations of brightness constancy with the use of robust statistics or with generalized brightness constancy constraints that allow generic types of contrast and illumination changes. Here, we consider models of brightness variation that have time-dependent physical causes, namely, changing surface orientation with respect to a directional illuminant, motion of the illuminant, and physical models of heat transport in infrared images. We simultaneously estimate the optical flow and the relevant physical parameters. The estimation problem is formulated using total least squares (TLS), with confidence bounds on the parameters.
منابع مشابه
Accurate optical flow computation under non-uniform brightness variations
In this paper, we present a very accurate algorithm for computing optical flow with nonuniform brightness variations. The proposed algorithm is based on a generalized dynamic image model (GDIM) in conjunction with a regularization framework to cope with the problem of non-uniform brightness variations. To alleviate flow constraint errors due to image aliasing and noise, we employ a reweighted l...
متن کاملRobot Motion Vision Pait I: Theory
A direct method called fixation is introduced for solving the general motion vision problem, arbitrary motion relative to an arbitrary environment. This method results in a linear constraint equation which explicitly expresses the rotational velocity in terms of the translational velocity. The combination of this constraint equation with the Brightness-Change Constraint Equation solves the gene...
متن کاملRobust Optical Flow Estimation Using Invariant Feature
Traditional methods for computing optical flow are mainly based on image brightness constancy. In the real world the brightness constancy usually does not hold. Here we present the idea of using invariant feature based on the brightness change model to estimate the optical flow. Both the mathematical derivation and the experiments show that the new model is better than brightness based optical ...
متن کاملLearning Optical Flow
Assumptions of brightness constancy and spatial smoothness underlie most optical flow estimation methods. In contrast to standard heuristic formulations, we learn a statistical model of both brightness constancy error and the spatial properties of optical flow using image sequences with associated ground truth flow fields. The result is a complete probabilistic model of optical flow. Specifical...
متن کاملDetermining Constant Optical Flow
The original optical flow algorithm [1] dealt with a flow field that could vary from place to place in the image, as would typically occur when a camera is moved through a three-dimensional environment—or if objects moved in front of a fixed camera. A related, but simpler problem, is that of recovering the motion of an image, all parts of which move with the same velocity (section 4.3 in [2]). ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 23 شماره
صفحات -
تاریخ انتشار 2000